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optimal value of a stochastic programming problem by using bootstrapping.
Bootstrapping is a resampling method used in the statistical inference of un-
known parameters for which only a small number of samples can be obtained.
One such parameter is the optimal value of a stochastic optimization prob-
lem involving complex spatio-temporal uncertainty, for example coming from
weather prediction. However, bootstrapping works provably better than tra-
ditional inference technique based on the central limit theorem only for pa-
rameters that are finite-dimensional and smooth functions of the moments,
whereas the optimal value of the stochastic optimization problem is not. In
this paper we propose and analyze a new bootstrap-based estimator for the
optimal value that gives higher-order confidence intervals.
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1 Introduction

We explore the assymptotics of statistical estimates for stochastic program-
ming problems of the form

min
x∈X

f(x) := EF (x, u). (1)
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Here we assume that the feasible set X is defined by three-times continuously
differentiable constraints functions

X := {x ∈ K|gi(x) = 0, i = 1, 2, . . . , p; gi(x) ≤ i = p+ 1, . . . , q}. (2)

We use u to represent a random variable over the probability space (Ω,µ, P )
with values in Bu, a bounded subset of Rm.

We seek to understand the properties of approximations to the function
f(x) that are brought about by sample average approximation (SAA)

min
x∈X

fN (x) = fN (x, ω) =
1

N

N∑
i=1

F (x, ui(ω)), (3)

where ui, i = 1, 2, . . . , N , are identical independent and identically distributed
(i.i.d.) realizations of u.

Statistical estimates for the stochastic program (1) are obtained from the
SAA (3) [12] and based on convergence in distribution of the type

τN (vN − v∗)
D→ V. (4)

Here v∗ is the quantity to estimate (for example, optimal value of a stochastic
program (1)), vN is the estimator that depends on the sample size N , τN is a

normalizing sequence (for example, τN =
√
N
σN

, where σN is an estimate of the
standard deviation of the estimator vN ), and V is a fixed distribution function
such as the standard normal distribution.

Such estimates are essential, for example, for the construction of confidence
intervals and they are known to work well in the limit of large sample sizes.
On the other hand, in an increasing set of applications the collection of sam-
ples is expensive. One example is the situation where the system subject to
the optimization under uncertainty (for example, an energy system with mas-
sive penetration of renewable sources) is affected by complex spatio-temporal
uncertainty [4]. In this case, samples from the distribution are produced by
numerical weather prediction codes that can be enormously expensive; hence,
cannot realistically afford a large sample size, and instead, most times has to be
content with fewer than 100 samples. This situation raises questions about the
suitability of assuming the asymptotic regime described above in constructing
such estimates, since such statements by themselves allow in principle arbi-
trarily slow convergence rates.

To this end, we investigate the rate of convergence with sample size in
statements such as (4) for statistical estimates connected to stochastic pro-
gramming. For example we seek statements of the type

FN (x) = F (x) +O(N−a),

where FN (x) is the cumulative distribution of τN (vN − v∗) and F (x) is the
cumulative distribution of V . Here a > 0 is the order of convergence. Moreover,
we propose estimators that converge faster than do the typical choices, in the
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sense that their parameter a is larger. Such results offer the promise—which
we demonstrate in this work—of more accurate probability statements about
the quality of the estimator even at low sample sizes.

We will obtain faster estimators by means of a classical technique: boot-
strapping. However, bootstrap theory works well only for estimators that are
smooth functions of means and other low-order moments of a random variables
[9]. This situation, as we indicate later, cannot be assumed for most stochastic
programming problems. Therefore an important technical challenge, which we
solve here, is to develop analytical tools for bootstrap estimates in stochastic
programming.

2 Confidence Intervals

A confidence set is a set of possible values of a statistical parameter θ of
a random variable X. The confidence level of the set is determined by how
frequently the set contains the parameter. The most commonly used confidence
sets are the confidence intervals (CIs), or confidence regions for the multi-
variate case.

The introduction to confidence intervals presented in this section follows [3].
The α-confidence interval for θ is any random interval [L(X), U(X)] that sat-
isfies

P (θ ∈ [L(X), U(X)]) = α, (5)

where α ∈ (0, 1) is the confidence level, or the coverage probability of the
interval. Most commonly used are the 90%- and 95%-confidence intervals,
obtained for α = 0.90 and α = 0.95, respectively. An equal-tailed two-sided
confidence interval is a CI of the form (5) satisfying

P (θ ≤ L(X)) = (1− α)/2 = P (θ > U(X)), (6)

that is, an interval with the same level probability in each tail. Symmetric two-
sided CIs are constructed around a statistic θ̂ corresponding to the parameter
θ and have the form

P (|θ − θ̂| ≤ Ũ(X)) = α. (7)

One-sided intervals are the intervals of the form (5) for which L(X) = −∞.
Equal-tailed two-sided CIs can also be defined and usually are analyzed based
on one-sided intervals. For example, the α-confidence equal-tailed two-sided
interval [L(X), U(X)] is (−∞, U(X)) \ (−∞, L(X)), where L(X) and U(X)
are given by (6) .

Notation: For the rest of the paper we use the following notation: zα
denotes the quantiles of the standard normal distribution, being the solution
of the equation α = Φ(zα), where Φ(x) =

∫ x
−∞ φ(x)dx is the standard nor-

mal cumulative distribution function and φ(x) = (2π)−1/2 exp(−x2/2) is the
standard normal probability density function.

In this paper we assume that the distribution function F of the population
X is unknown and only an i.i.d sample X = {X1, X2, . . . , XN} drawn from F
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is available. In constructing CIs, sample-based statistics Ŵ and V̂ are chosen
such that

Ŵ − θ
V̂

→ N (0, 1), as N →∞ (8)

holds based on the central limit theorem. (Ŵ−θ)/V̂ is called a pivotal statistic
because asymptotically it does not depend on the population parameters. The
confidence interval is taken to be [Ŵ − z(1+α)/2V̂ , Ŵ − z(1−α)/2V̂ ]; however,
for a fixed N , the interval is only approximate since it is only asymptotically
exact, that is,

lim
n→∞

P (θ ∈ [Ŵ − z(1+α)/2V̂ , Ŵ + z(1−α)/2V̂ ]) = α. (9)

For example, in computing a CI for the first moment of X, θ = E[X] , Ŵ can

be taken to be the sample mean X̄ = 1
N

∑N
i=1Xi and V̂ to be σ̂/N1/2, where σ̂

is the standard deviation of the sample defined by σ̂2 = 1
N−1

∑N
i=1(Xi − X̄)2.

An approximate α-level CI can be taken to be [X̄ − N−1/2z(1+α)/2σ̂, X̄ −
N−1/2z(1−α)/2σ̂].

For a given N , the coverage error is defined to be the nominal coverage α
minus the approximate coverage P (θ ∈ [Ŵ −zα/2V̂ , Ŵ +zα/2V̂ ]). The concept
of correctness of a CI characterizes the rate of convergence of the coverage error
to zero with N . For example, it holds that

P (θ ∈ [Ŵ − z(1+α)/2V̂ , Ŵ − z(1−α)/2V̂ ]) = α+O(N−1/2), (10)

see [9]. In general, a CI [L,U ] with L and U depending on N is said to be
k-order correct (k ≥ 1 being an integer) if

P (θ ∈ [L,U ]) = α+O(N−k/2). (11)

In the context of this paper (N being small because the sampling is extremely
expensive) high-order CIs are valuable. Such CIs can be obtained based on the
theory of Edgeworth expansions, a refinement of (8) that develop (Ŵ − θ)/V̂
as a series of powers of N−1/2. Background on Edgeworth expansions and the
role of bootstrap methods are given in Section 3.2.

Asymptotics of Confidence Intervals
To discuss some of the difficulties in the asymptotics of confidence intervals,

we review some of the convergence concepts concerning a random variable
over a probability space (Ω,F , P ). The core concepts in this subsection can
be found in [1,12].

We recall that a random variable is a P -measurable mapping from Ω to Rd
for some d. For sequences of random variables XN (ω), ω ∈ Ω, we encounter
the following convergence concepts relative to a random variable X(ω). We
recall that the probability of a statement is the measure of the set for which
the statement is true with respect to the probability measure P . For example
P (X1 > X2) = P (X1(ω) > X2(ω)) = P ({ω|X1(ω) > X2(ω)}).



Bootstrapping for stochastic programming 5

– Convergence in probability: The sequence of random variables XN (ω) con-
verges in probability to the random variable X(ω) if

∀ε > 0, lim
N→∞

P (|XN (ω)−X(ω)| ≥ ε) = 0. (12)

– Convergence with probability 1 (almost sure convergence): The sequence
of random variables XN (ω) converges to the random variable X(ω) with
probability 1 (almost surely) if

P
(

lim
N→∞

|XN (ω)−X(ω)| = 0
)

= 1. (13)

– Convergence in distribution: The sequence of random variables XN (ω) con-
verges to the random variable X(ω) in distribution if

lim
N→∞

FN (x) = F (x), at all continuity points of F (x). (14)

where FN (x) are the cumulative distributions of XN (ω) and F (x) is the
cumulative distribution of X(ω). Here, for a random variable Y (ω), we
define the cumulative distribution FY to be

F (y) = P
(
Y 1(ω) ≤ y1, Y 2(ω) ≤ y2, . . . , Y d(ω) ≤ yd

)
, ∀y ∈ Rd. (15)

We also have that convergence with probability 1 is the strongest of the
three. It implies convergence in probability, which in turn implies convergence
in distribution [1, Theorem 25.2].

As suggested in (11), we are interested in making statements about the
asymptotics of the coverage intervals. That is, we would like to make state-
ments of the type (for example, for real-valued random variables)

P (XN (ω) ≤ x)− P (X(ω) ≤ x) = O(N−b), (16)

for some positive number b and at all x and where O(·) is the Landau asymp-
totic notation. Here X(ω) may be the target random variable and XN (ω) an
approximation.

In stochastic programming, asymptotics in distribution or in probability are
constructed by means of the delta theorem [12, Theorem 7.59]. Such asymp-
totics have the flavor, for example, of

XN (ω)−X(ω) = oP (N−a), (17)

taken to mean that Na |XN (ω)−X(ω)| converge to 0 in probability.
Unfortunately, such asymptotics in probability do not translate to similar

asymptotics in coverage, of the type (16). This difficulty is also alluded to in
the development of the asymptotics for classical bootstrapping [9].

Indeed, consider the following random variables over the probability space
given by the unit interval, with the usual Lebesgue measure:

X(ω) = ω, XN (ω) =

{
−1, 0 ≤ ω < 1

log(N+1) ,

ω, 1
log(N+1) ≤ ω ≤ 1.

(18)



6 M. Anitescu, C.G.Petra

It immediately follows that P (Na |XN (ω)−X(ω)| = 0) ≥ 1− 1
log(N+1) and

thus

P ( lim
N→∞

Na |XN (ω)−X(ω)| = 0) = 1,

for any positive a. This means that Na |XN (ω)−X(ω)| converges almost
surely, and, thus, in probability, to 0 for any a positive, irrespective of how
large.

On the other hand, we have that P (X(ω) ≤ 0) = 0, but P (XN (ω) ≤
0) = 1

log(N+1) . Therefore, clearly, in this case, (16) cannot be satisfied for any

positive b, irrespective of how small.
We thus conclude that the convergence in probability asymptotics of the

type provided by the delta theorem are insufficient to obtain similar asymp-
totics in coverage. We thus take a different technical direction, based on large
deviation theories for measures with compact support.

3 Bootstrap Confidence Intervals

Most concepts and discussions present in this section are taken from [8,7,9].
Bootstrap sampling refers to the use of same-size samples X ∗ = {X∗1 , . . . , X∗N}
drawn repeatedly with replacement from the original sample X = {X1, . . . , XN}.
This is equivalent to saying that X ∗ is drawn from the empirical distribution
function F̂ of X . Observe that the number of distinct bootstrap samples is
finite although very large even for relatively small N and is given by the bino-

mial coefficient
(

2N−1
N

)
= (2N−1)!

N ! (N−1)! . A bootstrap replication θ∗i is obtained by

evaluating θ̂ based on a bootstrap sample X ∗i instead of the original sample
X , i = 1, . . . ,

(
2N−1
N

)
.

Bootstrap replications mimic replications θ̂ that would have been obtained
by sampling the true distribution F . The simple and yet powerful idea behind
bootstrap is that it samples an approximating distribution, for example, the
empirical distribution F̂ , when the true population distribution is not avail-
able. The advantage of bootstrapping is that the bootstrap distribution which
we denote by F ∗ is known and can be easily sampled; and, since it is finite,
any parameters depending on it can be worked out to arbitrary accuracy by
using simulation.

3.1 Basic Bootstrap Confidence Intervals

An equivalent formulation of the problem of finding confidence intervals is to
find θL and θU that solve

P (θ ≤ θ̂ − θL) = (1− α)/2 = P (θ > θ̂ + θU ) (19)

and to take [θ̂ − θL, θ̂ + θU ] as an α-level equal-tailed two-sided CI for θ. In
the one-sample situation we assume in this paper, this confidence interval has
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to be approximated by bootstrapping. The bootstrap approximation is the
interval [θ̂ − θ̂L, θ̂ + θ̂U ], where θ̂L and θ̂U are bootstrap approximations to

θL and θU . More specifically, θ̂L and θ̂U are chosen to be the solution of the
bootstrap version of equation (19):

P (θ̂ ≤ θ∗ − θ̂L) = (1− α)/2 = P (θ̂ > θ∗ + θ̂U ). (20)

Bootstrap-t CIs presented in Section 3.2 are computed on this principle but
they use pivotal statistics of the form (8) and achieve an extra order of cor-
rectness (i.e., second-order correctness) over basic CIs (20).

A quite different approach consists of taking the α-level confidence inter-
val of θ∗ in the bootstrap distribution as an approximate CI. Namely, the
bootstrap approximation is [θL∗ , θU∗ ], where θL∗ and θU∗ solve the bootstrap
version of (5):

P (θ∗ ≤ θL∗) = (1− α)/2 = P (θ∗ > θU∗). (21)

These intervals are called bootstrap percentile confidence intervals because θL∗

and θU∗ are the (1 − α)/2 · 100th and (1 + α)/2 · 100th percentiles of the

bootstrap distribution. However, they are affected by the bias of θ̂, especially
for small sample sizes. BCa (bias-corrected and accelerated) intervals presented
in Section 3.2 are of this type, but they explicitly correct the bias (and the
skewness) and are second-order correct.

3.2 High Order Bootstrap Confidence Intervals

Consider the random vector X and the parameter θ = f(µ), where f is a
smooth function and µ = E[X]. We note that any parameter defined as a
smooth function of the moments of X fits this setup; see [9, Section 2.4].

3.2.1 Hall CIs

Given an i.i.d. sample X = {X1, X2, . . . , XN} withdrawn from X, the parame-

ter θ is estimated by the statistic θ̂ = f(X̄). Also let σ2 = h2(µ) be the asymp-

totical variance of N1/2θ̂, with h being a known smooth function. Usually σ2

is not known because µ is not available, and an estimate σ̂2 = h2(X̄) is used

instead. Denote by H(x) and K(x) the distribution functions of (θ̂−θ)/σ2 and

(θ̂−θ)/σ̂2, respectively. The α-level quantiles xα = H−1(α) and yα = K−1(α)

can be used to construct exact confidence intervals for θ̂. More specifically, one
can be easily verify that

P (θ ≤ θ̂ −N−1/2σx1−α) = P (θ ≤ θ̂ −N−1/2σ̂y1−α) = α (22)

and that one-sided intervals

I1 = I1(α) =
(
−∞, θ̂ −N−1/2σx1−α

)
(23)

J1 = J1(α) =
(
−∞, θ̂ −N−1/2σ̂y1−α

)
(24)
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are exact α-level confidence intervals for θ.
Analogous α-level equal-tailed two-sided CIs can be obtained based on

one-sided intervals defined above:

I2 = I1

(
1 + α

2

)
\ I1

(
1− α

2

)
=
(
θ̂ −N−1/2σx 1+α

2
, θ̂ −N−1/2σx 1−α

2

)
, (25)

J2 = J1

(
1 + α

2

)
\ J1

(
1− α

2

)
=
(
θ̂ −N−1/2σ̂y 1+α

2
, θ̂ −N−1/2σ̂y 1−α

2

)
. (26)

We adopt the terminology from [9] and call J intervals percentile-t confidence
intervals. The same term is used, for example, in [5], for CIs built on the
Student t-statistic; however, in the present work it refers only to J intervals.

Since the quantiles xα and yα are not available (θ is not a priori known)
one has to rely on approximations of xα and yα to build confidence intervals.
One such approximation is given by the central limit theorem which states that
under some regularity conditions, (θ̂−θ)/σ2 and (θ̂−θ)/σ̂2 are asymptotically
normally distributed and that xα and yα tend to zα = Φ−1(α) as N →∞ [3].
The corresponding“normal approximation” CIs are computed by replacing xα
(or yα) with zα for anyN . Such intervals are only first-order correct, for reasons
presented below, and one has to rely on bootstrapping to obtain higher-order
correct CIs. The benefit of bootstrapping is that it considers additional terms
from the Edgeworth expansions of the distribution functions of (θ̂−θ)/σ2 and

(θ̂ − θ)/σ̂2 in the approximation of xα and yα.
The bootstrap CIs approximating the true CIs (25) and (26) are obtained

by bootstrapping the quantiles xα and yα. Consider the bootstrap counterparts
(θ∗ − θ̂)/σ̂2 and (θ∗ − θ̂)/σ∗2 of (θ̂ − θ)/σ2 and (θ̂ − θ)/σ̂2, and denote by
Ĥ(x) and K̂(x) their distribution functions. Here the bootstrap estimate of
the variance is defined based on the same principle as θ∗ was defined in the
previous paragraph, that is, σ∗2 = h2(X̄∗). The bootstrap approximations to
α-level quantiles xα and yα are taken to be x̂α = Ĥ−1(α) and ŷα = K̂−1(α).
Since the distributions Ĥ(x) and K̂(x) are discrete, x̂α and x̂α are precisely
defined by

x̂α = inf {x|P [N1/2(θ∗ − θ̂)/σ̂ ≤ x|F̂ ] ≥ α}, (27)

ŷα = inf {y|P [N1/2(θ∗ − θ̂)/σ̂ ≤ v|F̂ ] ≥ α}. (28)

The sample-based quantiles x̂α and ŷα can be computed to arbitrary pre-
cision by sampling F̂ . The one-sided bootstrap percentile-t CIs corresponding
to the true CIs (23) and (24) are

Î1 =
(
−∞, θ̂ −N−1/2σ̂x̂1−α

)
, (29)

Ĵ1 =
(
−∞, θ̂ −N−1/2σ̂ŷ1−α

)
. (30)

The definition of two-sided bootstrap CIs I2 and J2 is identical to (25) and
(26) with Î1 and Ĵ1 replacing I1 and J1, respectively.
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The dissimilarity between I1 and J1 comes from the use of different variance
estimates, namely, an unknown quantity σ2 = h2(µ) for I1 and a computable
quantity σ̂2 = h2(X̄) for J1. There are two approximations when bootstrap-
ping I1, xα by x̂α and σ by σ̂; however, there is only one approximation when
bootstrapping J1, yα by ŷα. This aspect turns out to be crucial in the order
of correctness of the bootstrap CIs intervals Î1 and Ĵ1: Î1 is only first-order
correct and Ĵ1 is second-order correct.

The correctness analysis of Î1 and Ĵ1 is based on Cornish-Fisher expan-
sions of x̂α and ŷα. These expansions are inverted Edgeworth expansions of the
distribution function of H(x) and K(x) (and their bootstrap counterparts).
Edgeworth expansions improve the central limit theorem in at least two as-
pects. First, they provide additional terms in the approximation; second, they
are true asymptotical expansions in the sense that the error is controlled. More
specifically, under regularity conditions on the moments of X and continuity
of the first (k + 2)th derivatives of f , it can be proved ([8, Section 1.4 and
Section 5], also [9, Theorem 2.2]) that

H(x) = Φ(x)+N−1/2p1(x)φ(x)+ . . .+N−k/2pk(x)φ(x)+O(N−(k+1)/2) (31)

holds uniformly in x, where pi(x) is a polynomial of degree i+ 1 whose coeffi-
cients depend on the first i+ 2 derivatives of f and first i+ 2 moments of X.
Under the same assumptions, a similar Edgeworth expansion holds for K(x):

K(x) = Φ(x)+N−1/2q1(x)φ(x)+ . . .+N−k/2qk(x)φ(x)+O(N−(k+1)/2), (32)

where qi(x) are polynomials that have the same properties and are computed
exactly as the polynomials pi(x) from (31) with σ̂ replacing σ.

Edgeworth expansions can be “inverted” to be obtain Cornish-Fisher ex-
pansions of the quantiles of a distribution function. Cornish-Fisher expansions
are also asymptotic series that hold uniformly in ε < α < 1 − ε, for any
ε ∈ (0, 1/2). In the context of CIs, Cornish-Fisher expansions are known as a
tool that corrects the effects of non-normality. Under the same assumptions
under which Edgeworth expansion (31) of H(x) or (32) of K(x) exists, one
can be prove (see [9, Theorem 2.4], see also [7]) that

xα = zα +N−1/2p11(zα) + . . .+N−k/2pk1(zα) +O(N−(k+1)/2), (33)

yα = zα +N−1/2q11(zα) + . . .+N−k/2qk1(zα) +O(N−(k+1)/2), (34)

uniformly in ε < α < 1− ε, for any ε ∈ (0, 1/2). Here the polynomials pj1 and
qj1 are of degree at most j + 1, odd for even j and even for odd j, and depend
on cumulants of order up to j + 2.

The bootstrapped distribution function Ĥ(x) and K̂(x) also possess Edge-
worth expansions which can be “inverted” to obtain Cornish-Fisher expansions
of x̂α and ŷα. These expansions have the form

x̂α = zα +N−1/2p̂11(zα) + . . .+N−k/2p̂k1(zα) +O(N−(k+1)/2), (35)

ŷα = zα +N−1/2q̂11(zα) + . . .+N−k/2q̂k1(zα) +O(N−(k+1)/2). (36)
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The polynomials p̂k1 and q̂k1 are computed in the same way the polynomials
pk1 and qk1 are computed, the only difference being that the sample moments
replace the population moments. The last remark causes

p̂k1 = pk1 +Op(N
−1/2) and q̂k1 = qk1 +Op(N

−1/2).

Observe that the difference between the polynomials is characterized by “order
in probability”. A random variable ZN is said to have order δN in probability,
written ZN = O(δN ), if the sequence

lim lim sup
t→∞ N→∞

P (|ZN/δN | > t) = 0.

Consequently, the bootstrap quantiles are second-order correct to the true
quantiles since

x̂α − xα = N−1/2(p̂11(zα)− p11(zα)) +Op(N
−1) = Op(N

−1), (37)

ŷα − yα = N−1/2(q̂11(zα)− q11(zα)) +Op(N
−1) = Op(N

−1). (38)

The second-order correctness of the bootstrap quantiles gives benefits only
in the case of bootstrap percentile-t intervals J . To see this, we first compare
the endpoints of Î1 with I1:

(θ̂ −N−1/2σ̂x̂1−α)− (θ̂ −N−1/2σx1−α) = N−1/2x1−α(σ̂ − σ) +Op(N
−3/2)

= N−1x1−αN
1/2(σ̂ − σ) +Op(N

−3/2) = Op(N
−1),

since N1/2(σ̂ − σ) = Op(1). On the other hand, the endpoints of Ĵ1 and J1

satisfy

(θ̂ −N−1/2σ̂ŷ1−α)− (θ̂ −N−1/2σ̂y1−α) = N−1/2σ̂y1−α(σ̂ − σ̂) +Op(N
−3/2)

= Op(N
−3/2).

Therefore, the endpoints of Ĵ1 have an extra order of correctness over the
endpoints of Î1. This shows the advantage of using the pivotal statistics (θ̂ −
θ)/σ̂2 over the nonpivotal statistic (θ̂−θ)/σ2 in computing confidence intervals.

Ĵ1 is not obviously second-order correct as per definition (11), because, as
discussed in §2, asymptotic convergence in probability does not imply asymp-
totics in coverage. In fact, the analysis of the size of coverage error for one-
sided bootstrap confidence intervals is elaborate. An Edgeworth expansion of
the coverage probabilities (see [9, Proposition 3.1 and Theorem 5.3]) is used
to show

P (θ ∈ Î1(α)) = α+O(N−1/2), (39)

P (θ ∈ Ĵ1(α)) = α+O(N−1), (40)

uniformly with ε < α < 1− ε, for any ε ∈ (0, 1
2 ).
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3.2.2 Bias-corrected and accelerated bootstrap CIs

The bias-corrected and accelerated (BCa) bootstrap methods introduced by
Efron [5] do not use a pivotal statistics and work directly in the bootstrap
distribution F ∗.

Define G(x) = P (θ̂ ≤ x) and Ĝ(x) = P (θ∗ ≤ x), the distribution functions

of θ̂ and θ∗. The computation of the bootstrap CI based on (21) reduces to
computing the (1−α)/2- and (1+α)/2-level quantiles of Ĝ, namely v̂(1−α)/2 =

Ĝ−1((1 − α)/2) for θL∗ and v̂(1+α)/2 = Ĝ−1((1 + α)/2) for θU∗ . Bias occurs
mainly because of lack of symmetry of the distribution of θ. It is corrected
by shifting the quantiles v̂α = Ĝ−1(α) = Ĝ−1(Φ(zα)) to v̂BC,α = Ĝ−1(Φ(zα +

2m̂)), where m̂ = Φ−1(Ĝ(θ̂)) accounts for centering error occurring at the
median.

A second adjustment for skewness yields the BCa quantile

v̂BCa,α = Ĝ

(
Φ

(
m̂+

zα + m̂

1− â(zα + m̂)

))
, (41)

where â is known as the acceleration constant and approximates the skewness
of (a first-order approximation to) the pivotal statistic (θ̂ − θ)/σ̂2 [6,9]. One
of the most common expressions of â is

â = N−1/2 1

6

Â

σ̂3
, (42)

where

Â =
3

N
[f ′(X̄)]3

N∑
i=1

(Xi − X̄)3. (43)

Analysis of the correctness order of the BCa intervals from [9, Chapter 3.10]
reveals that the BCa quantile is second-order correct to ŷα:

v̂BCa,α = ŷα +O(N−1), (44)

which implies that one-sided BCa intervals of the form

Ĵ1,BCa(α) = (−∞, v̂BCa,α) (45)

are second-order correct.

In practice, â is estimated by using the jackknife method, and it does
not need an estimate σ̂; see [6, Chapter 14] for a thorough discussion and
Section 5.2 for the computational details. Therefore, Efron’s intervals do not
need a pivotal statistic, and their accuracy is not affected by the inaccuracies
in σ̂ occurring for small N in Hall’s intervals.
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4 Asymptotic Results for Stochastic Programs

This section is close to [12, Theorem 5.8] in its aims, with a couple of significant
differences. First, we move away from convergence in probability and we seek
exponential convergence results, given the limited usability of convergence in
probability results for asymptotics of coverage intervals, as pointed out in §2.
Second, the nature of the analytical results in [12, Theorem 5.8] provides the
expansion of the optimal value of the SAA approximation to the stochastic
program in terms of quantities evaluated at x∗, the solution of the stochastic
program. We proceed the other way around: we approximate the optimal value
of the stochastic program in terms of quantities evaluated at the solution of
the sample average approximation. In turn, this will allow for the construction
of higher-order estimates of the value of the stochastic program itself.

We consider the stochastic programs (1) whose objective function is an
expectation, that is,

f(x) = EuF (x, u) (46)

and F is a sufficiently regular function whose properties will be described later.
In addition, we assume that f itself can be computed only by evaluating the
integral defining the expectation in (46).

Notation: We will use n for the dimension of the variable space x, m for
the dimension of the range of the random variable u, and N for the number
of samples.

We seek to understand the properties of approximations to the function
f(x) that are brought about by sample average approximation

fN (x) = fN (x, ω) =
1

N

N∑
i=1

F (x, ui(ω)) (47)

and how these influence the relationship between minimizing f over a set X
and minimizing fN (x).

What makes reasoning about resampling applied to (1) difficult is that
some of the most convenient tools for bootstrap analysis require that the target
estimator be a smooth function of the expected value (or low-order moments)
of u(ω) [9]. This is not the case in (1), where allowing for arbitrary nonlinear
dependence with u in (47) does not result in the optimal value (when using f
as objective function in minimizing over a set X, (1)) being a function of only
a finite set of moments of u. It is conceivable that an approximation approach
based on Taylor series followed by invoking results from [9] would work, but
we want to explore the consequences of limited differentiability of F in u, so
the latter approach would be inconvenient here.

We thus follow a different approach. We divide into two parts the problem
of constructing estimators for the solution of optimization problems with ob-
jective function f . First, using large deviation theory, we construct estimates
whose flavor is

P(|N b(θ̂ − θ)| > ε) = f1(ε)Nf2(ε) exp(−f3(ε)N c).
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Here θ is the quantity we aim to estimate (such as the optimal value of a

program involving f) and θ̂ is the estimator. The quantities b, c are positive
exponents, and f1,f2, and f3 are positive-valued functions. Note the difference
with concepts of convergence in probability, where the right-hand side would
only be required to converge to 0, whereas here it converges exponentially to
0 with increasing N and fixed ε. Subsequently, since the estimator θ̂ contains
only means of f and its derivatives with respect to x at a fixed point x̂,
bootstrap theory can be applied.

In this entire work, we make the following assumption:

[A0] u(ω) is a random variable whose image lies in a compact set Bu ⊂ Rm.

In addition, in this section we make two further assumptions that are im-
portant for establishing such convergence properties. That is, we assume that
there exists a compact set K such that the following are satisfied.

[A1] ∇xF (x, u) is directionally differentiable for any x ∈ K and u in Bu with
the directional derivatives uniformly bounded over K × Bu.

[A2] f(x) = EuF (x, u) is twice continuously differentiable in x over K, with
Lipschitz continuous second derivative.

Discussion Assumption [A2] will be the most limiting assumption of our
analysis. In particular, it does not allow us, in the current form of the theory,
to apply our results to two-stage stochastic programming with inequality con-
straints in the second stage. Using results in [2], one can show, that, in the
case of nonlinear stochastic programming where the second-stage problem is
uniformly regular in terms of both first- and second-order conditions, [A1] will
hold. Intuitively, it would seem that for some problem classes, [A2] would hold
as well.

Indeed, consider the case F (x, u) = sgn(x− u) (x− u)2 and u is uniformly
distributed in [−1, 1]. It then follows that

∇xf(x) =

∫ 1

−1

|x− u|du =

∫ x

−1

(−u+ x) du+

∫ 1

x

(x− u) dt

=
1

2
(1 + x)2 +

1

2
(1− x)2,

whenever x ∈ [−1, 1]. Hence, the sample average approximation may be not
twice differentiable even though the average itself is (actually, infinitely differ-
entiable).

Unfortunately, we have not succeeded in following this line of thought to
have [A2] hold for a sufficiently significant class of two-stage stochastic pro-
grams with inequality constraints. For the case of three times differentiable
equality constraints in the second stage, assumptions [A1] and [A2] seem to
hold for the broad problem class, and thus they will hold for the case of
smoothing the inequality constraints as brought about by, for example, using
interior point with a fixed barrier parameter in the second stage.

In any case, two-stage stochastic programming with inequality constraints
would need more analysis. We will thus content ourselves with assuming [A1]
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and [A2] in the more abstract framework defined by (46) (and, hence, (1)) and
gauge their consequences.

Under [A0]–[A2] we have the following result.

Lemma 1 There exist Cg1 and Cg2 such that

P
(

sup
x∈K

∣∣∣∣∇xfN (x)−∇xf(x)
∣∣∣∣
∞ ≥ ε

)
≤ Cg1

1

εn
exp(−Cg2Nε2).

Proof The result follows from [12, Theorem 7.67] applied componentwise to
gradients. That result applies because the conditions leading to it are satisfied:
uniform Lipschitz continuity of the gradient of F follows from [A1], and all
moment generating conditions follow from [A0]. �

4.1 Exponential Convergence to a Neighborhood of the Solution

After considering the results for the approximation of the objective function
f(x) = EF (x, u) by sample average approximation, we now concentrate on the
exponential convergence property for the stochastic program (1). In addition,
we assume thatX ⊂ K holds, whereK is the compact set used in the preceding
section to analyze the large deviations.

We make the following new assumptions about the solution of the stochas-
tic program (1) and its SAA approximation (3):

[A3] The problem (1) has a unique solution x∗ that is in the interior of K.

We then have that the probability that a solution xN of (3) is outside any
given neighborhood of x∗ converges exponentially to 0 with increasing sample
size. Formally, the statement is as follows.

Theorem 1 Assume that [A1] and [A3] holds. Let ε > 0 be such that B(x∗, ε) ⊂
K. Then, for any solution xN of (3) we have that there exist CK1 , C

K
2 > 0

such that
P(
∣∣∣∣xN − x∗∣∣∣∣ > ε) < CK1 exp(−NCK2 ). (48)

Proof The result follows from Corollary 5.19 in [12].
We verify that the conditions leading to that result do hold. Assumption

[A1] ensures the uniform Lipschitz property of F (x, u) and thus assumption
(M5) in that result’s assumptions hold. Moreover, as a result of Hoeffding’s
inequality (see the discussion following Corollary 5.19 in [12]), the moment-
generating function of the random variable Y = F (x, u) − f(x) − [F (x′, u) −
f(x)] is bounded above by exp(2L2 ||x′ − x||2 t2) where L is a bound on the
Lipschitz parameter. In turn, this implies that assumption (M6) used in Corol-
lary 5.19 in [12] does hold. Assumption (M1) invoked in that reference holds
immediately due to our assumption that u has a bounded range and that
X ⊂ K, a compact set.

We can thus use those results to get the conclusion, where CK1 and CK2 are
parameters depending on n, ε, L, and the diameter K. The proof is complete.
�
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4.2 A Locally Equivalent Unconstrained Optimization Program

The main aim of this section is to obtain a high-quality estimate of the value
of the stochastic program (1) as a function of the sample size, N . To that end,
we need to introduce a few assumptions about the quality of the solution point
x∗ of (1).

First, we introduce the Lagrangian of (1):

L(x, λ) = f(x) +

q∑
i=1

λigi(x).

At a feasible point x, we define by I(x) the active set, the set of indexes of
inequality constraints that are 0 (active) at x∗, that is,

I(x) := {i|gi(x) = 0, i = p+ 1, p+ 2, . . . q}.

The assumptions required are as follows.

[A4] At the point x∗, (1) satisfies the linear independent constraint qualification.
[A5] The unique Lagrange multiplier obtained as a result of [A4] satisfies the

strict complementarity condition.
[A6] At the point x∗, (1) satisfies the second-order sufficient condition.

For completeness, we recall that the linear independence constraint quali-
fication (LICQ) requires that the matrix of the active constraints

J(x) = ∇gI(x)(x), where I(x) = {1, 2, . . . , p} ∪ I(x), (49)

be full row rank at x∗. Another way to state it is that

d ∈ Rcard(I(x∗)) ⇒
∣∣∣∣J(x∗)T d

∣∣∣∣ ≥ σJ ||d|| . (50)

Here, σJ is the smallest singular value of J(x∗), and by LICQ it must be a
positive quantity. We define

J∗(x) = ∇gI(x∗)(x). (51)

Also, a Lagrange multiplier of (1) at x∗ is a vector λ = (λ1, λ2, . . . , λq)
satisfying

∇xL(x∗, λ) = 0, λi ≥ 0, i = p+1, . . . , q, gi(x
∗) > 0⇒ λi = 0, i = p+1, . . . , q.

As a consequence of the constraint qualification [A4], such a multiplier exists
and is unique [11].

Strict complementarity implies that all Lagrange multipliers of the active
inequality constraints are positive, that is,

λi > 0, ∀i ∈ I(x∗).
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The second-order sufficient condition (under the strict complementarity
condition) implies that there exists a σ > 0 such that

∇igi(x∗)d = 0∀i ∈ I(x∗)⇒ dT∇2
xxL(x∗, λ)d ≥ σLdT d. (52)

We also define a neighborhood of x∗ wherein any solution of (1) with some
perturbation of the objective function has the same feasible constraints and
active set. Formally the result is the following.

Lemma 2 There exist ρS > 0 and δS such that ∀x ∈ X, ||x− x∗|| ≤ ρS. We
then have the following:

a) gi(x) < 0,∀i /∈ I(x∗).

b) d ∈ Rcard(I(x∗)) ⇒
∣∣∣∣J(x∗)T d

∣∣∣∣ ≥ σJ
2 ||d|| .

c) ∀η ∈ Rn such that ||η|| ≤ δS and ∀x ∈ X such that ||x− x∗|| ≤ ρS, we
have that

PJ∗⊥ (∇f(x) + η) = −
∑

i∈I(x∗)

λi(x, η)∇gi(x), λi(x, η) > 0, i ∈ I(x∗).

Here λi(x, η) are the unique scalars with this property for given x ∈ X,
and η. Here PJ∗⊥ denotes the orthogonal projection on the space spanned
by the columns of J∗(x)T .

d) ∀η ∈ Rn, ||η|| ≤ δS, ∀x ∈ X such that ||x− x∗|| ≤ ρS, we have that

∇igi(x)d = 0,∀i ∈ I(x∗) implies dT∇2
xxL(x, λ(x, η))d ≥ σL

2
dT d.

Note: All statements are made with respect to the active set at x∗.

Proof Item (a) follows immediately from the fact that the twice differentia-
bility of the data of (1) implies that the inactive set of a nonlinear program is
robust to perturbations. Item (b) follows from the continuity of the singular
value of a matrix with respect to the matrix data. Item (c) follows from the
KKT conditions at x∗, which in turn implies that

PJ∗⊥ (∇f(x∗)) =
∑

i∈I(x∗)

λi∇gi(x∗),

together with the strict complementarity assumption [A5] and the fact that
the projection operator is continuous. For item (d) we note that the previous
items imply that λi(x, η) are continuous functions of x, η. In turn continuity of
the eigenvalues of a matrix with respect to its entries applied to the projection
of ∇2

xxL(x, λ(x, u)) onto the nullspace of kernel of J∗(x), and the second-order
sufficient condition (52) give the conclusion. �

An immediate consequence of Lemma 2 is that any sufficiently small per-
turbation of (1) (where the size of the perturbation is governed by δS in terms
of the size of the gradient) can have as stationary points only points that have
the same active set as x∗ and that satisfy the strict complementarity condition.

In particular, we have the following result.
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Lemma 3 Let I(xN ) be the active set at xN , the solution of (3). There exist
CI1 > 0 and CI2 > 0 such that

P
(
I(xN ) 6= I(x∗)

)
≤ CI1 exp(−CI2N).

Proof From Theorem 1 we have that there exist CK1 and CK2 such that

P
(∣∣∣∣xN − x∗∣∣∣∣ ≥ ρs) ≤ CK1 exp(−CK2 N).

The rest of the argument and the subsequent probabilities will be developed
conditional on

∣∣∣∣xN − x∗∣∣∣∣ ≤ ρS . In this situation, it follows from Lemma 2 (a),
that I(xN ) ⊂ I(x∗). LICQ holds at (xN ) from Lemma 2 (b), and thus KKT
holds and, from the definition (51) there will exist Lagrange multipliers λN ⊂
Rcard(I(x∗) satisfying

∇xfN (xN ) + J∗(xN )λN = 0.

It then follows, with the notation from Lemma 2 (c) that λN = λ(xN , η), where
η = ∇xfN (xN )−∇xf(xN ). We also have from Lemma 2 c) that ||η|| ≤ δS im-
plies that λNi = λNi (xN , η) > 0, ∀i ∈ I(x∗). In turn, from the complementarity
condition at optimality for (3) we have that I(xN ) = I(x∗). To summarize,
we have that(∣∣∣∣xN − x∗∣∣∣∣ ≤ ρS) ∧ (∣∣∣∣∇xfN (xN )−∇xf(xN )

∣∣∣∣ ≤ δS)⇒ I(xN ) = I(x∗).

Using the properties of the probabilities that P(A ∧B) ≥ 1− P(Ac)− P(Bc),
and that A⇒ B results in P (A) < P (B), we obtain that

P
(
I(xN ) = I(x∗)

)
≥ 1− P

(∣∣∣∣∇xfN (xN )−∇xf(xN )
∣∣∣∣ ≥ δS)

− P
(∣∣∣∣xN − x∗∣∣∣∣ ≥ ρS) .

Now, using Theorem 1 and Lemma 1, we obtain that

P
(
I(xN ) = I(x∗)

)
≥ 1− Cg1

ρNS
exp(−Cg2Nρ2

S)− CK1 exp(−CK2 N).

The conclusion follows by taking CI1 = 2{C
g
1

ρNS
, CK1 } and CI2 = min{Cg2ρ2

S , C
K
2 }.

�
To simplify our subsequent analysis, we will aim to make the program (1)

locally equivalent to an unconstrained optimization program based on LICQ
and strict complementarity. Indeed, [A4] leads to the fact that there exists a
set of columns of J(x∗) whose rank is exactly card(I(x∗)). We denote by xd

the vector made by the variables whose indices are the ones of these columns
and by xe its complement. It follows that the implicit function theorem ap-
plies implying that there exist a twice continuously differentiable function

h : N (xe∗) ⊂ Rn−card(I(x∗)) → Rcard(I(x∗)) and a neighborhood N (x∗) ⊂ Rn
that satisfies

x ∈ N (x∗), gI(x∗)(x) = 0, x =
(
xe, xd

)
⇔ gI(x∗)(x

e, h(xe)) = 0. (53)



18 M. Anitescu, C.G.Petra

This setup allows us to define the reduced stochastic program

min
xe

fe(xe) := E[F ((xe, h(xe)), u)]. (54)

It trivially follows from (53) and assumptions [A4]-[A6] that x∗e is a solution
of this problem.

We define now a ball neighborhood of radius ρR of x∗e such that the lifting
of xe to the space X belongs to the neighborhood of x∗ defined in Lemma 2;
that is,

||xe − x∗e|| ≤ ρR ⇒ ||(xe, h(xe))− x∗|| ≤ ρS . (55)

4.3 Unconstrained Stochastic Program Analysis

We also define its SAA approximation of (54),

min
xe

feN (xe) :=
1

N

N∑
i=1

[F e(xe, ui)], (56)

for the same samples as (3). Here, we have defined

F e(xe, u) := F ((xe, h(xe)), u). (57)

We note that if xN is a solution of (3), then xeN is a solution of (56). Re-
ciprocally in a neighborhood of x∗e, if xeN is a solution of (56) (with the
assumptions used here, it is also unique), then xN = (xeN , h(xeN )) is a solu-
tion of (3).

We now analyze the properties of xeN with increasing N , restricted to
the compact set K = B(xe∗, ρR). Based on the observation above, we will
recover from this the properties of xN . Moreover, we make the entire analysis
conditional on the solution xeN of (56) belonging to B(x∗e, ρR). Therefore, for
the rest of this subsection we assume that xeN ∈ B(xe∗, ρR).

We use the following notation:

LN1 = sup
xe∈K

∣∣∣∣∇xefe(xe)−∇xefeN (xe)
∣∣∣∣ , (58)

L3 = sup
xe1,x

e
2,x

e
3,x

e
4∈K

xe1 6=xe2, xe3 6=xe4

∣∣∣∣(∇2
xexef

e(xe3)−∇2
xexef

e(xe4)
)

(xe1 − xe2)
∣∣∣∣

||xe1 − xe2|| ||xe3 − xe4||
,

1

σ0
= sup

xe∈K

∣∣∣∣∇2
xexef

e(xe)−1
∣∣∣∣ . (59)

We note that L3 and σ0 exist following assumption [A2] and [A4]-[A6],
coupled with the implicit function theorem. With this notation we can state
the following results.

Lemma 4

∀xe1, x
e
2 ∈ K : ||∇xefe(xe2)−∇xef(xe1)|| ≥ σ0 ||xe2 − xe1|| .
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Proof First, observe that

(xe2 − xe1)
T

(∇xefe(xe1)−∇xefe(xe2)) =

=

∫ 1

0

(xe2 − xe1)
T ∇2

xexef (xe1 + t (xe2 − xe1)) (xe2 − xe1) dt

(59)
≥ σ0 ||xe2 − xe1||2 .

By the preceding inequality and Cauchy-Schwarz inequality, we obtain that

σ0 ||xe2 − xe1||2 ≤ (xe2 − xe1)
T

(∇xefe(xe1)−∇xefe(xe2))

≤ ||xe2 − xe1|| ||∇xefe(xe1)−∇xefe(xe2)|| . (60)

In turn, this imples that

||∇xefe(xe1)−∇xefe(xe2)|| ≥ σ0 ||xe2 − xe1|| ,

which proves the claim. �

Lemma 5 Let xeN and xe∗ be such that ∇xefeN (xeN ) = 0 and ∇xefe(xe∗) =
0. Then ∣∣∣∣∣∣xeN − xe∗∣∣∣∣∣∣ ≤ LN1

σ0
.

Proof We have that

σ0

∣∣∣∣∣∣xeN − xe∗∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∇xefe(xeN )−∇xefe(xe∗)
∣∣∣∣∣∣ (based on Lemma 4)

=
∣∣∣∣∣∣∇xefe(xeN )

∣∣∣∣∣∣ =
∣∣∣∣∣∣∇xefe(xeN )−∇xefeN (xeN )

∣∣∣∣∣∣
(58)
≤ LN1 .

This proves the claim. �

Theorem 2 Under the assumptions of Lemma 5 we have that

fe(xe∗) = fe(xeN )− 1

2

[
∇xefe(xeN )

]T
·
[
∇2
xexef

e(xeN )
]−1

·

· ∇xefe(xeN ) + ψN2 ,

where |ψN2 | ≤ Γ
(
LN1
)3

, for some positive constant Γ (independent of n, xe).

Proof The idea of the proof is that we do a Taylor expansion at xeN for
the exact mean function and use Lemma 5. We do the expansion at xeN for
f , and we obtain that

fe(xe∗) =fe(xeN ) +∇xefe(xeN )(xe∗ − xeN )+

+
1

2
(xe∗ − xeN )T∇2

xexef
e(xeN )(xe∗ − xeN ) + ψN3 , (61)
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where
∣∣ψN3 ∣∣ ≤ L3

∣∣∣∣xeN − xe∗∣∣∣∣3.
Doing the same for the gradient, we obtain

0 = ∇xefe(xe∗) = ∇xefe(xeN ) +∇2
xexef

e(xeN )
(
xe∗ − xeN

)
+ ψN4 , (62)

where
∣∣∣∣ψN4 ∣∣∣∣ ≤ nL3

∣∣∣∣xe∗ − xeN ∣∣∣∣2.
Replacing (62) in (61), we obtain

fe(xe∗) = fe(xeN )− 1

2

(
xe∗ − xeN

)T
∇2
xexef

e(xeN )
(
xe∗ − xeN

)
+ψN5 , (63)

with ‖ψN5 ‖ ≤ L3(1 + n)
∣∣∣∣xe∗ − xeN ∣∣∣∣3.

From (62), using that ∇xefeN (xeN ) = 0, we obtain

0 = −∇xefeN (xeN ) +∇xefe(xeN ) +∇2
xexef

e(xeN )
(
xe∗ − xeN

)
+ ψN4 ,

which implies(
xeN − xe∗

)
=
[
∇2
xexef

e(xeN )
]−1 (

∇xefe(xeN )−∇xefeN (xeN ) + ψN4

)
.

Replacing the expression for
(
xe∗ − xeN

)
in (63), collecting the residuals, and

using the upper bound 1/σ0 on
∣∣∣∣∣∣(∇2

xexef
e(xeN )

)−1
∣∣∣∣∣∣ we obtain the conclusion

for Γ = 2L3(1+3n)
σ3
0

. The proof is complete. �

We now return to the SAA interpretation, where we relate to the previous
analysis by means of the notation

fe(xe) = EuF
e(xe, u), feN =

1

N

N∑
i=1

F (xe, ui).

It immediately follows that ∇xefe(xe∗) = 0 and that ∇xefeN (xeN ) = 0 from
the optimality conditions of the stochastic problem and its SAA approxima-
tion. We define

Ψ(xeN ) = EuF
e(xeN , u)− 1

2

[
Eu∇xeF e(xeN , u)

]T
· ∇2

xexe

[
EuF

e(xeN , u)
]−1

·

·
[
Eu∇xeF e(xeN , u)

]
. (64)

We are now in position to state our main result.

Theorem 3 There exist C1(ε) > 0 and C2 > 0 such that for any a > 0 we
have that

P
(∣∣∣EuF e(xe∗, u)− Ψ(xeN )− ηN

∣∣∣N− 3
2 +a ≥ ε

∣∣∣ ∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR) ≤
≤ C1ε

−n3Nn( 1
2−

a
3 ) exp

(
−C2N

a
3 ε

2
3

)
. (65)

Here ηN is a random variable satisfying |ηN | ≤ Γ2(LN1 )3, conditionally on∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR (and can be, for example, ηN = 0).
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Note that the probability is stated conditionally on xeN being sufficiently close
to xe∗.

Proof We assume that
∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR, which make all of our state-

ments conditional statements (as is the conclusion we aim to prove).
We rewrite the conclusion of Theorem 2 using the definition of Ψ to obtain

that

EuF
e(xe∗, u) = Ψ(xeN ) + ηN + ψN2 ,

∣∣ψN2 ∣∣ ≤ (Γ + Γ2)
(
LN1
)3
.

We thus obtain (using 0 < A < B ⇒ P(A > ε) < P(B > ε)) that

P
(∣∣∣EuF e(xe∗, u)− Ψ(xeN )

∣∣∣N− 3
2 +a ≥ ε

∣∣∣ ∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR) ≤
P
(

(Γ + Γ2)
(
LN1
)3
N−

3
2 +a ≥ ε

∣∣∣ ∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR) =

P
(
LN1 N

− 1
2 + a

3 ≥ ε 1
3 (Γ + Γ2)

− 1
3

∣∣∣ ∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR) Lemma 1
≤

Cg1 ε
−n3 (Γ + Γ2)

n
3Nn( 1

2−
a
3 ) exp

(
− Cg2

(Γ + Γ2)
2
3

N
2a
3 ε

2
3

)
.

Here the parameters Cg1 and Cg2 are obtained with Lemma 1 for the reduced
stochastic programs (56) and (54), where the compact set K for which assump-
tions [A1] and [A2] hold are defined is

∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR. The conclusion

follows after defining C1 = Cg1 (Γ + Γ2)
n
3 and C2 =

Cg2

(Γ+Γ2)
2
3

. �

A difficulty is that, in our case, F e(xe, u) is not twice differentiable but
once differentiable, and the derivative is uniformly directionally differentiable,
with bounded directional derivative.

Define the directional derivatives

Di∇xeF e(xe, u) = lim
t→0,t>0

∇xeF e(xe + tei, u)−∇xeF e(xe, u)

t
,

where ei, i = 1, 2, . . . , nxe , are the canonical vectors,

ei =

0, 0, . . . , 0,

ith position
↓
1 , 0 . . . , 0


T

.

Theorem 4 The following identity holds:

∇2
xexeEu [F e(xe, u)] ei = Eu

[
Di∇xeF e(xe, u)

]
.

Proof Using the dominated convergence theorem, we obtain that for any xe

DiEu [∇xeF e(xe, u)] = Eu
[
Di∇xeF e(xe, u)

]
, i = 1, 2, . . . , nxe . (66)

Similarly, we have that Eu [∇xeF e(xe, u)] = ∇xeEu [F e(xe, u)]. This im-
plies, since Eu [∇xeF e(xe, u)] is differentiable, that

DiEu [∇xeF e(xe, u)] = ∇2
xexeEu [F e(xe, u)] ei.
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From the above equation and (66), the conclusion follows. �
Using Theorem 4, we obtain that

Ψ(xeN ) = EuF
e(xeN , u)− 1

2

[
Eu∇xeF e(xeN , u)

]T
·

·
[
EuH(xeN , u)

]−1

·
[
Eu∇xeF e(xeN , u)

]
, (67)

H(xe, u) =
[
D1∇xeF e(xe, u), D2∇xeF e(xe, u), . . . , DnxeF e(xe, u)

]
.

We can now use a different sample v1, v2, . . . , vn to estimate Ψ(xeN ) and
build confidence intervals using bootstrapping. This is what we exactly propose
in the next section for the more general case, namely, constrained nonlinear
stochastic problems (1).

4.4 Application to the Nonlinear Stochastic Programming

In this section we state our main result that applies to nonlinear stochastic
problems (1), which are assumed to satisfy the assumptions [A1]-[A6]. We
write its sample average approximation (3) in the following form:

minx
1
N

∑N
i=1 F (x, ui(ω)),

subject to gi(x) = 0, i = 1, 2, . . . , p,
gi(x) ≤ 0, i = p+ 1, . . . , q,

(68)

and we define its solution by xN (ω), and its Lagrange multipliers—if they
exist–by λN with components λNi . We define the following estimator:

Υ (xN , λN ) = EuF (xN , u)− 1

2

[
Eu∇xL(xN , λN , u)

0

]T
·

·
[
EuH̃(xN , λN , u) J(xN )T

J(xN ) 0

]−1

·
[
Eu∇xL(xN , λNu)

0

]
, (69)

where

H̃(xN , λN , u) = H(xN , u) +
∑

λi∇2
xxgi(x

N ),

H(x, u) =
[
D1∇xF (x, u), D2∇xF (x, u), . . . , DnxF (x, u)

]
.

We define by Υ̂ (xN ) the estimator of Υ (xN ) using a second sample of size
N (see (85) for its expression). We construct the bootstrap confidence intervals

based on Υ̂ (xN ).
The following is our main result.

Theorem 5 Assume that [A1]-[A6] hold for the formulation (68). Also let

Ĵ1 be either the bootstrap confidence interval Ĵ1 (given by (24)) or Ĵ1,BCa
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(given by (45)) constructed for Υ̂ (xN , λN ) based on a second sample, with λN

obtained from the sample average approximation of (1). Then

P(f(x∗) ∈ Ĵ1(α)) = α+O(N−1+a)

for any a > 0.

Proof The proof consists of several stages.
Reduction to the framework in §4.3 We can invoke all relevant results

from §4 since assumptions [A1]-[A6] hold.
Conditioning Events
Therefore, from Theorem 1 it follows that

P(
∣∣∣∣xN − x∗∣∣∣∣ ≥ ρR) ≤ C1 exp(−NC2).

When
∣∣∣∣xN − x∗∣∣∣∣ ≤ ρR, it follows that

∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR and the results
from Section 4.3 apply. Following Lemma 3 we have that the probability that
xN has the same active set as x∗ grows exponentially to 1 with N . In particular

P
(
I(xN ) = I(x∗)

)
≥ 1− CI1 exp(−CI2N).

We now condition on the event I(xN ) = I(x∗) as well.
In summary, we will condition our statements on the events I(xN ) = I(x∗)

and
∣∣∣∣xN − x∗∣∣∣∣ ≤ ρR. From here on we assume both hold, until the final

probability calculation.
Equivalence between specially constrained and unconstrained met-

rics
We now prove that this assumption implies that

Ψ(xeN ) = Υ (xN , λ̃N ), (70)

where we have defined the special multiplier

λ̃N := −
(
∇xdgI(x∗)(x

N )
)−T ∇xdf(xN ). (71)

We call it a “special” multiplier, because xN is not a stationary point of
a problem whose objective function is f ; therefore, it cannot be a proper
multiplier. Also note that it is a theoretical concept for analyis purposes only,
since to compute it would require computing f and the integral that defines
it exactly. Recall that xd is the complement of xe in x, as defined by (53).

Indeed, define V ∗(x) ∈ Rn × Rn−I(x∗) to be a matrix of full column rank
parameterizing the nullspace of J∗(x); that is, J∗(x)V ∗(x) = 0. V ∗(x) as a
mapping of x need not be regular, and can be obtained—conceptually, since
we will never practically compute it—from the QR factorization of the square
matrix [J∗T (x), 0].

Moreover, following (53) and
∣∣∣∣xeN − xe∗∣∣∣∣ ≤ ρR , we have that xeN is a

solution of (56). Also, the active set in the definition of Υ (xN , λN ) is the same
as the one at x∗, so J(xN ) = J∗(xN ).
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In the following we carry out a calculation for a generic multiplier λ̂N ,
which can take the place of either λN obtained from (3) or the special multiplier
defined in (71).

Following the definition of Υ , we introduce the vector (dx; dλ) defined im-
plicitly by[

EuH̃(xN , λ̂N , u) J∗(xN )T

J∗(xN ) 0

] [
dx
dλ

]
=

[
Eu∇xL(xN , λ̂N , u)

0

]
, (72)

which, in turn, results from (69) in the expression

Υ (xN , λ̂N ) = EuF (xN , u)− 1

2

[
Eu∇xL(xN , λ̂N , u)

0

]T [
dx
dλ

]
. (73)

Working from (72) we see that J∗(xN )dx = 0, which in turn implies the
existence of a vector dv that satisfies dx = V ∗(xN )dv. Multiplying the first
row of (72) by (V ∗)T and using the fact that (V ∗(xN ))T (J∗(xN ))T = 0 and,
subsequently, that

(V ∗(xN ))TEu∇xL(xN , λ̂N , u) = (V ∗(xN ))TEu∇xF (xN , u),

we obtain that

(V ∗(xN ))T H̃(xN , λ̂N , u)V ∗(xN )dv = (V ∗(xN ))TEu∇xF (xN , u).

In turn, using these relations again in (73) together with J(x∗)dx = 0, we
obtain that

Υ (xN , λ̂N ) = EuF (xN , u)− 1

2

[
(V ∗(xN ))TEu∇xF (xN , u)

]T ·
·
(

(V ∗(xN ))T H̃(xN , λ̂N , u)V ∗(xN )
)−1

·

·
[
(V ∗(xN ))TEu∇xF (xN , u)

]
. (74)

We now express the quantities from (74) in terms of the quantities from
(54). In terms of the notations in (53) it follows that a choice of a matrix V ∗

that spans the null space of J∗ is

V ∗(xN ) =

[
I

∇xeh(xe)

]
(computed with respect to the partition (xe, xd)). In turn, this implies that
(where we use again f(x) ≡ EF (x, u) )[

(V ∗(xN ))TEu∇xF (xN , u)
]

= ∇xef(xN , u) +∇xdf(xN , u)∇xeh(xe)

= ∇xefe(xe). (75)

We now look at the second-order derivatives of fe(xe), at which point we use
the definition of the multiplier λ̃N (71).
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To that end, we note on the basis of (53) the equivalence

f(xe, h(xe)) + g(xe, h(xe))T λ̃N ≡ f(xe, h(xe)) ≡ fe(xe)

It immediately follows, on the basis of this equivalence, using the chain rule
and differentiating twice, that

∇2
xexef(xe, h(xe)) =

[
I

∇xeh(xe)

]T
∇2
xxL(x, λ̃)

[
I

∇xeh(xe)

]
+

+∇xe

∇xL(x, λ̃)

↓︷ ︸︸ ︷[
I

∇xeh(xe)

] ,

where the symbol ↓ is used to point out to which part of the expression the
differentiation is applied. The last term is then equivalent to

∇xe

∇xdL(x, λ̃)

↓︷ ︸︸ ︷
∇xeh(xe)

 ,

which must be 0, since by the choice of λ̃N we have from (71) that∇xdL(x, λ̃) =
0. In turn, this implies that

∇2
xexef(xe, h(xe)) =

[
I

∇xeh(xe)

]T
∇2
xxL(x, λ̃)

[
I

∇xeh(xe)

]
= (V ∗(xN ))T H̃(xN , λ̃N , u)V (xN ),

the last statement following from commuting the differentiation with the E
operator (which is legitimate because of the twice continuous differentiability
of the functions involved). We have now verified that all terms in expression
(74) are equal to those in the definition of Ψ , (64) which proves the claim (70).

Conditional estimate for Υ . We first bound the distance between λ̃N

defined in (71) and the multiplier obtained by solving (3). Since the multiplier
of (3) satisfies

λN := −
(
∇xdgI(x∗)(x

N )
)−T ∇xdfN (xN ),

we obtain that∣∣∣∣∣∣λN − λ̃N ∣∣∣∣∣∣ =
∣∣∣∣∣∣(∇xdgI(x∗)(x

N )
)−T (∇xdfN (xN )−∇xdf(xN )

)∣∣∣∣∣∣
≤
∣∣∣∣(∇xdgI(x∗)(x

N )
)∣∣∣∣LN1 ≤ ΓLLN1 ,

where we used (58), and, for the last inequality, the result of Lemma 2. Using

the identity (74) (which holds for a generic λ̂N ) and the identity (75) we obtain
that there exists a Γ such that

|Υ (xN , λN )− Υ (xN , λ̃N )| ≤ ΓL2

∣∣∣∣∇efe(xeN )
∣∣∣∣2 LN1 ,
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where ΓL2 depends on the bound of second derivatives in ρR and ΓL.
Now using Lemma 5, Assumption [A2], and the fact that ∇xefe(x∗,e) = 0,

which in turn implies that
∣∣∣∣∇xefe(xeN )

∣∣∣∣ = O(
∣∣∣∣x∗,e − xeN ∣∣∣∣), we obtain that

there exists a ΓL3 such that

|Υ (xN , λN )− Υ (xN , λ̃N )| ≤ ΓL3

(
LN1
)3
.

Using the last relation and (70), as well as all the events with respect to

which we condition, and Theorem 3 (with ηN = Υ (xN , λN )− Υ (xN , λ̃N )) we
obtain that there exist C1(ε) > 0 and C2 > 0 such that for any a > 0 we have
that

P
( ∣∣∣∣∣∣EuF (x∗, u)− Υ (xN , λN )

∣∣∣∣∣∣N− 3
2
+a ≥ ε

∣∣∣ ∣∣∣∣∣∣xeN − xe∗∣∣∣∣∣∣ ≤ ρR, I(xN ) = I(x∗)
)
≤

≤ C1ε
−n

3 Nn( 1
2
− a

3 ) exp
(
−C2N

a
3 ε

2
3

)
.

We now use the following relationships among probabilities:

P (A) = P (A|B)P (B) + P (A|B̄)P (B̄) ≤ P (A|B) + P (B̄),

and P (B ∩ C) ≤ P (B̄) + P (C̄) to obtain that

P
(
|EuF (x∗, u)− Υ (xN , λN )|N− 3

2 +a ≥ ε
)
≤

≤ C1ε
−n3Nn( 1

2−
a
3 ) exp

(
−C2N

a
3 ε

2
3

)
+

≤ + CI1 exp(−CI2N) + CK2 exp(−CK2 N). (76)

Here we have used that the complements of the events on which we are con-
ditioning are bounded by the results in Lemma 3 and Theorem 1.

Using the bootstrap estimate We now note that the estimator Υ (69)
contains only smooth (in effect, polynomial) functions of the means of random
variables. We note also that this statement does not regard variations with x,
which is held fixed, but does regard functions of random variables defined at
xN , which have proper moment conditions.

Using the bootstrap theory, we obtain, with the notation of (24), that

P(Υ (xN , λN ) ≤ θ̂ −N−0.5σ̂ŷ1−α) = α+O(N−1) (77)

P(Υ (xN , λN ) ≥ θ̂ −N−0.5σ̂ŷ1−α) = 1− α+O(N−1) (78)

uniformly for α ∈ (η, 1 − η) and η ∈ (0, 0.5). Here θ̂ is the empirical value of
Υ (with xN , λN fixed, but the mean estimated with the new sample), σ̂ is the
empirical standard deviation, and ŷ1−α the bootstraped quantile, satisfying
K̂(ŷ1−α) = 1 − α. From (32), and the uniform Lipschitz property of all the
terms involved in that expansion, as well as the fact that for Υ we can take
k =∞ in (32), we obtain that

|K̂(ŷ1−α + δ)− α| ≤ Cδ +O(N−
k+1
2 ), (79)

for some fixed C and k.
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To simplify notation, we denote EuF (x∗, u) = Ψ∗, and Υ̂ ≡ Υ̂ (xN , λN ).
Also let ŵα generically denote either ŷα or ẑBCa,α. Keep in mind that |ŵα−ŷα|
is either 0 or O(N−1) (from (44)). In (76) fix ε = 1.

Using that P (A) ≤ P (A|B) + P (B̄), we obtain that

P(Ψ∗ ≥ θ̂ −N− 1
2 σ̂ŵ1−α) ≤

P
(
Ψ∗ ≥ θ̂ −N− 1

2 σ̂ŵ1−α

∣∣∣ ∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≤ N− 3
2 +a

)
+ P

(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≥ N− 3
2 +a
)
≤

P
(
Υ̂ ≥ θ̂ −N− 1

2 σ̂ŵ1−α −N−
3
2 +a
)

+ P
(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≥ N− 3

2 +a
) (44)
≤

P
(
Υ̂ ≥ θ̂ −N− 1

2 σ̂ŷ1−α +O(N−
3
2 )−N− 3

2 +a)
)

+ P
(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≥ N− 3

2 +a
) (79),(78),(76)

≤

1− α+O(N−1) +O(N−
k+1
2 ) + CN−1+a 1

σ̂
+O(Nn( 1

2−
a
3 ) exp(−C ′2N

a
3 )),

where in the exponential terms we incorporated all the exp(−N) term in (76)
in the last term. After analyzing all leading terms (for fixed, but arbitrary
0.5 > a > 0), we obtain that

P(Ψ∗ ≥ θ̂ −N−0.5σ̂ŵ1−α) ≤ 1− α+O(N−1+a). (80)

A similar analysis, working now with (77), leads to the opposite bound as
well. Using again that P (A) ≤ P (A|B) + P (B̄), we obtain that

P(Ψ∗ ≤ θ̂ −N− 1
2 σ̂ŵ1−α) ≤

P
(
Ψ∗ ≤ θ̂ −N− 1

2 σ̂ŵ1−α

∣∣∣ ∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≤ N− 3
2 +a

)
+ P

(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≤ N− 3
2 +a
)
≤

P
(
Υ̂ ≤ θ̂ −N− 1

2 σ̂ŵ1−α +N−
3
2 +a
)

+ P
(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≥ N− 3

2 +a
) (44)
≤

P
(
Υ̂ ≤ θ̂ −N− 1

2 σ̂ŷ1−α +O(N−
3
2 ) +N−

3
2 +a)

)
+ P

(∣∣∣∣∣∣Ψ∗ − Υ̂ ∣∣∣∣∣∣ ≥ N− 3
2 +a
) (79),(77),(76)

≤

α+O(N−1) +O(N−
k+1
2 ) + CN−1+a 1

σ̂
+O(Nn( 1

2−
a
3 ) exp(−C ′2N

a
3 )),

In turn, this results in

P(Ψ∗ ≤ θ̂ −N−0.5σ̂ŵ1−α) ≤ α+O(N−1+a).



28 M. Anitescu, C.G.Petra

Using (80), we obtain that

P(Ψ∗ ≤ θ̂ −N−0.5σ̂ŵ1−α) = 1− P(Ψ∗ ≥ θ̂ −N−0.5σ̂ŵ1−α)

≥ 1− (1− α) +O(N−1+a) = α+O(N−1+a).

From the definitions (24) and (45), the last two equations prove the claim.�

5 Numerical simulations

5.1 Test problems

The numerical performance of the estimator Υ̂ is studied with two test prob-
lems. Since the validation of the nominal coverage requires extensive simula-
tions, we chose small problems to keep the computational cost tractable. The
first problem, which we call TOY, is a one-dimensional unconstrained problem
given by

min f(x) := Eu(x− u)4, (81)

where u ∼ U(0, 1), with the optimal solution x∗ = 0.5 and optimal value
f(x∗) = 0.0125. The SAA problem is

min fN (x) :=
1

N

N∑
i=1

(x− ui)4, (82)

where ui, i = 1, . . . , N , are random i.i.d realizations drawn from U(0, 1). Due
to the smoothness of the function F (x, u) in the casting of (1), assumptions
[A0]-[A6] hold in this case.

The second problem is a two-stage stochastic optimization problem with
recourse, which we call PROB2Q. Even though stochastic programming prob-
lems with recourse do not necessarily fit the framework of Section 4.4, we
present the behavior of bootstrap confidence intervals and show numerical ev-
idence that they are superior to “normal” confidence intervals. PROB2Q is a
modification of a oil refinery model [10] that describes the weekly production
process of a refinery that buys crude oil from two sources and has to supply
two clients with gasoline and heating fuel. We added quadratic costs both in
the first stage (costs of buying crude oil) and in the second stage (“penalty”
costs induced by the incapacity of satisfying demand due to unforseen events
u1 and u2 in determining the demand). PROB2Q problem takes the following
form

min f(x1, x2) :=
5

2
x2

1 +
5

2
x2

2 + 7.4x1 + 2.4x2 + Eu1,u2
Q(x1, x2;u1, u2), (83)

where

Q(x1, x2;u1, u2) = miny1,y2
1
2 (y2

1 + y2
2)− 2y1 − 2y2

s.t. y1 ≥ 20 + u1 − (2x1 + 6x2)
y2 ≥ 10 + u2 − (3x1 + 3x2).

(84)
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Here u1 ∼ U(−10, 10) and u2 ∼ U(−5, 5). PROB2Q has a unique optimal
solution at x∗ = (x1, x2) = (3, 0) and an optimal value f(x∗) = 35.1. As we
discussed following the statement of assumption [A2], at the moment we cannot
state that our theory applies for the two-stage stochastic programming case,
but it is an important case to study empirically, in particular, because [A2]
cannot be ensured to hold (all the other assumptions can be proved to hold
here). Moreover, following the theory from [2], it can be shown that F (x, u)
is twice directionally differentiable when mapping (84) in the framework (1).
Therefore the estimator (69) does exist, though we cannot state that our main
result Theorem 5 holds.

5.2 Bootstrap Numerical Method

In this section we present the bootstrap methodology we used to compute
confidence intervals based on the estimator Υ given by (69). Recall that a
sample (u1, u2, . . . , uN ) was used to pinpoint a point xN at which Υ is defined.
Since Υ is a function of moments, a second sample (v1, v2, . . . , vN ) is needed
to obtain the estimator

Υ̂ = Υ̂ (v1, v2, . . . , vN ) =
1

N

N∑
i=1

F (xN , vi)−
1

2

[
1
N

∑N
i=1∇xL(xN , λN , vi)

0

]T
·

[
1
N

∑N
i=1 H̃(xN , λN , vi) J(xN )T

J(xN ) 0

]−1

·
[

1
N

∑N
i=1∇xL(xN , λN , vi)

0

]
, (85)

which is bootstrapped to obtain the confidence intervals.
In our preliminary numerical tests we observed that the BCa method is

superior to Hall’s method for small-sized samples. In our opinion this be-
havior is caused by large errors present in the variance estimate σ̂2 used by
Hall’s method. We now present the methodology of constructing bootstrap α-
level confidence intervals using the BCa method. A short introduction to BCa
method was given in Section 3.2.2; a detailed discussion can be found in [6].

The computation of Υ̂ requires the evaluation of the second-stage recourse
objective, its gradient, and the directional derivative of the gradient for each
sample vi. While it is simple to get the value of the objective and the gradi-
ent by solving the second-stage problem, the directional derivative is a more
computationally intensive operation. In the numerical experiments presented
here we obtained the directional derivative by evaluating analytical expres-
sions that we have been able to derive because of the small dimensionality of
the test problems. In general, another optimization problem has to be solved
to get the directional derivative of the gradient [2, Theorem 5.53].

It is crucial to the numerical performance of the method presented in Fig-
ure 1 to observe that the evaluation of the second-stage recourse objective, its
gradient, and the directional derivative of the gradient can be done only once
for each sample (a total 2N optimization problems) when initially comput-

ing Υ̂ and reused both in the bootstrap and jackknife phases when computing
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Procedure for computing the BCa α-level one-sided
confidence intervals Ĵ1,BCa(α) for Υ

Bootstrapping V = (v1, v2, . . . , vN )
1. Draw with replacement B samples from V, namely V1,V2, . . . ,VB .

2. For each b = 1, . . . , B evaluate Υ̂Bb = Υ̂ (Vb).
3. Compute Υ̂B = 1

N

∑B
b=1 Υ̂

B
b .

Computing the acceleration â using jackknife

4. For each i = 1, . . . , N evaluate Υ̂Ji = Υ̂ (VJi ),
where VJi = (v1, . . . , vi−1, vi+1, . . . , vN ).

5. Compute Υ̂J = 1
N

∑N
i=1 Υ̂

J
i .

6. Compute â =
∑N
i=1(Υ̂J − Υ̂Ji )3/

(
6
(∑N

i=1(Υ̂J − Υ̂Ji )2
)3/2)

.

Bias correction and skewness adjustment

7. Compute m̂ = Φ−1( 1
B

card{Υ̂Bb < Υ̂ : b = 1, . . . , B}) and zα = Φ−1(α).

8. Compute αc = Φ
(
m̂+ zα+m̂

1−â(zα+m̂)

)
.

9. Obtain the BCa quantile v̂BCa,α = min
{
y : 1

B
card{Υ̂ ≤ y : b = 1, . . . , B} ≥ α

}
.

Return Ĵ1,BCa = (−∞, v̂BCa,α).

Fig. 1 Steps taken in the computation of the one-sided α-level confidence interval using the
BCa method. The procedure can be applied to any Υ that can be expressed as a function
of moments.

Υ̂Bb ’s and Υ̂ Ji ’s. Therefore, the computational cost of the method increases only
linearly with B.

5.3 Performance of bootstrapping

In this section we present the numerical order of bootstrap for the estimator
Υ̂ for the TOY and PROB2Q problems. We also compare the performance
of Υ̂ with that of the “uncorrected” SAA estimator f(xN ) = EuF (xN , u),
where, as before, xN is the solution of the SAA problem based on the first
sample u1, . . . , un. The second sample v1, . . . , vN is used for bootstrapping

f̂(xN ) = 1
N

∑N
i=1 F (xN , vi). We call this simply the SAA estimator.

We applied the BCa bootstrap methodology presented in Section 5.2 to

both Υ̂ and f̂(xN ). The coverage P(f(x∗) ∈ Ĵ1,BCa(α)) of the CIs of the
abovementioned estimators was computed by simulation, as follows. We first
computed a large number (90 thousand for the TOY problem and 200 thousand
for the PROB2Q problem) confidence intervals Ĵ1,BCa(0.05) and Ĵ1,BCa(0.95)
for various sample sizes N . We then approximated the coverage by the per-
centage of confidence intervals that contained the true optimal value.

For a given sample size N , we define the coverage error as eN = |P(f(x∗) ∈
Ĵ1,BCa(α))−α|, α ∈ {0.05, 0.95}. The eN error should be reduced to zero with
N at an O(N−1+a) rate, a > 0, according to Theorem 5.

We use a robust linear regression for eN = βN−γ to compute the “numer-
ical” order of correctness of bootstrapping applied to the estimator Υ̂ defined
by Theorem 5 and SAA estimator f(xN ). For Υ̂ we also computed the normal
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Table 1 Coverages of one-sided 5% (left columns) and 95% (right columns) CIs for the
TOY problem. For the statistic Υ we also show coverages for the normal studentized CIs.

Υ f(xN )
n Normal CIs BCA CIs BCA CIs
3 0.0634 0.5071 0.0291 0.4764 0.0201 0.2613
5 0.0373 0.5965 0.0385 0.6314 0.0217 0.4990
10 0.0243 0.7264 0.0428 0.8011 0.0280 0.7515
15 0.0224 0.7889 0.0458 0.8653 0.0311 0.8387
20 0.0224 0.8268 0.0466 0.9013 0.0324 0.8764
25 0.0235 0.8471 0.0466 0.9173 0.0341 0.8971
30 0.0241 0.8624 0.0467 0.9286 0.0342 0.9099
40 0.0245 0.8798 0.0471 0.9401 0.0365 0.9243
50 0.0273 0.8934 0.0478 0.9445 0.0372 0.9293
100 0.0312 0.9152 0.0488 0.9497 0.0410 0.9377
200 0.0357 0.9262 0.0495 0.9499 0.0414 0.9418
400 0.0394 0.9358 0.0491 0.9492 0.0434 0.9432

studentized CIs (9) and compared their accuracy with that of the bootstrap
CIs.

Table 2 Coverages of one-sided 5% (left columns) and 95% (right columns) CIs for the
PROB2Q problem. For the statistic Υ we also show coverages obtained by using normal
studentized CIs.

Υ f(xN )
n Normal corr BCA Corr BCA NO Corr
3 0.0140 0.6572 0.0705 0.5370 0.1208 0.6781
5 0.0095 0.7522 0.0887 0.7265 0.0917 0.7983
10 0.0084 0.8336 0.0720 0.8730 0.0783 0.9029
20 0.0091 0.8749 0.0579 0.9317 0.0670 0.9245
30 0.0112 0.8885 0.0537 0.9416 0.0625 0.9341
40 0.0132 0.8979 0.0525 0.9451 0.0605 0.9554
50 0.0149 0.9039 0.0515 0.9465 0.0589 0.9560
100 0.0220 0.9177 0.0508 0.9481 0.0562 0.9543
200 0.0292 0.9263 0.0505 0.9484 0.0544 0.9525
400 0.0344 0.9343 0.0492 0.9500 0.0520 0.9530

The order of correctness for the confidence intervals obtained by bootstrap
for the estimator Υ , defined in this paper, was found to be better than the term
O(N−1+a) predicted by Theorem 5: 1.67(0.69) and 1.59(1.13) in the case of
the PROB2Q problem (for α = 0.05 and α = 0.95, respectively) and 2.11(1.14)
in the case of the TOY problem for α = 0.95. Here we show in parentheses the
result for the classical confidence intervals of the SAA estimator f(xN ) that
do not use bootstrap. For α = 0.05 the order of correctness is 0.82, and its
departure from 1 most likely is caused by the large negative skewness of the
distribution of Υ Note that the order is larger by precisely 0.5 compared with
the classical estimator, in any case (0.32, see Figure 2).

The correctness of confidence intervals based on the statistic Υ we proposed
in this paper is superior to the correctness of the confidence intervals based
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Fig. 2 Errors eN (N = {3, 5, 10, 15, 25, 50, 100, 200}) of the BCa coverages from Table 1
(TOY problem) plotted against a robust linear regression fit for βN−γ = eN . The bootstrap
order given by γ is the slope of the linear regression and is found to be 0.82 for Υ and 0.32 for
f(xN ) in the case of the 5% percentile interval Ĵ1,BCa(0.05) (top subplot). The bootstrap

order is 2.11 for Υ and 1.14 for f(xN ) in the case of the 95% confidence interval Ĵ1,BCa(0.95)
(bottom subplot).

on the classical SAA estimate f(xN ), as can be seen in Figure 2 and Figure 3.
The correctness of the confidence intervals for Υ constructed by bootstrapping
is always at least one order (O(N−0.5)) better than that of f(xN ) .

When comparing the quality of the normal studentized CIs with that of
the BCa CIs (both applied to the statistic Υ ) shown in Table 1 and Table 2,
one can easily see that the performance of bootstrap is better than that of
studentized CIs, in terms of both accuracy at small samples and asymptotic
order of correctness.

6 Conclusions

We have presented a new, bootstrap-based approach for creating statistical
estimators of the optimal value of stochastic programs for which the coverage
probability of the confidence intervals converge faster than the standard esti-
mates to their nominal values. In turn, this allows a more reliable uncertainty
estimate for lower sample sizes. The latter feature is essential in applications
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Fig. 3 Errors eN (N = {10, 20, 30, 40, 50, 75, 100}) of the BCa coverages from Table 2
(PROB2Q problem) plotted against a robust linear regression fit for βN−γ = eN . The last
two rows from Table 2 (corresponding to N = 200 and N = 400) were not included in the
regression and in the plots since the accuracy of the coverage is likely to be affected by the
simulation noise for these large values of N . The bootstrap order given by γ is the slope of
the linear regression and is found to be 1.67 for Υ and 0.69 for f(xN ) in the case of the 5%

percentile interval Ĵ1,BCa(0.05) (top subplot). The bootstrap order is 1.59 for Υ and 1.13

for f(xN ) in the case of the 95% confidence interval Ĵ1,BCa(0.95) (bottom subplot).

where sampling is extremely expensive, such as in stochastic unit commit-
ment for power grid management, where the samples from the state of the
atmosphere need to be produced [4].

Under some conditions about the regularity of the stochastic program,
we prove that our estimates have an almost O(N−1) coverage probability
compared with standard estimates that have error O(N−0.5). We point out,
in addition, that our analytical framework allows for the evaluation of the
asymptotics of the coverage probabilities, which is valuable even for standard
estimates (and new, to our knowledge). The good convergence properties are
demonstrated with two numerical examples.

We make several assumptions that limit the generality of our approach.
We regard these assumptions as important tradeoffs as we attempt to create
analytical tools to analyze the asymptotics of the coverage of confidence inter-
vals. Perhaps the most limiting at this moment is that the first-stage nonlinear
program has a Lipschitz, twice-differentiable objective with Lipschitz second
derivatives after accounting for the second-stage variable. In particular, this
makes our analysis not immediately applicable to two-stage stochastic pro-
gramming with inequality constraints, even as empirically the results seem
to hold for the two-stage stochastic program we tested. Our analysis would
hold for some approximations such as some smoothing of constraint effects.
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Nevertheless, relaxing this and some of the other assumptions is an important
future endeavor.

Moreover, while superior asymptotically, our solution needs two samples.
The difficulty comes from the fact that we have found no way to analyze
statistical estimates based on resampling the first sample. Our approach has
been to construct an estimator that involves only smooth functions of the
mean of a distribution, and then to invoke results from [8]. Unfortunately,
we have not yet found a way to cast the optimal value in this fashion di-
rectly in terms of finite-dimensional distributions for which the results in [8]
apply. We could repeat the reduction approach in §4.3 without difficulty, and
then state that xN converges exponentially to a neighborhood of x∗ where
xeN = arg minEu[FN ((xe, h(xe), u)]. Then xeN is a function of the mean de-
fined over some infinite dimensional space, which exhibits some smoothness
in a functional derivative sense. Unfortunately, the results in [8] apply only
for random variables in finite-dimensional space. We add, however, that our
endeavor in bootstrapping the first sample has indicated empirically substan-
tially more variability and lower asymptotic quality than in the two-sample
approach, but it is hard to say at this point how generic this is, partly be-
cause of the very high validation cost. Whether bootstrapping with one sam-
ple can work for stochastic programming—in the sense of superior convergence
estimates—and how to attack this problem analytically for one sample is an
intriguing question for future research.
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